The Report of Delaunay’s Death Has Been Greatly Exaggerated

Author name commented out

Address commented out

Abstract

Although much of the early research in position-
based routing for ad-hoc networks focused on the two-
dimensional Delaunay triangulation, recent work has
abandoned the Delaunay triangulation because no suit-
able algorithm for calculating it was available. This pa-
per presents a new algorithm for computing the Delaunay
graph in any number of dimensions. The algorithm is
proved to be self-stabilizing, which means that, from any
initial state, the system’s state will converge to the De-
launay graph. Because it is self stabilizing, the algorithm
is suited for distributed applications where processors are
unreliable and locations are changing, such as mobile ad-
hoc networks in two or three dimensions.

1 Introduction

Position-based routing is a class of routing algorithms
for ad-hoc networks where messages are routed to the
(expected) location of the destination.[7] Position-based
routing has the advantage that, as compared to other ap-
proaches to routing, it scales well as the number of nodes
in the network increases. During operation, nodes learn
of their location from GPS or some other location service.
Nodes learn the location of distant nodes via a name-to-
location mapping provided by a directory service.[13]

Early work on position-based routing, such as [3], fo-
cused on forwarding messages only over edges in the
Delaunay triangulation. (See Figure 1 for an example
of a Delaunay triangulation.) The Delaunay triangu-
lation was popular because it has a number of good
properties[1], including:

e Few neighbors. On average, a node in a Delau-
nay triangulation is connected to less than 6 other
nodes, referred to as neighbors. For randomly
placed nodes!, the chances that a node has more
than 12 neighbors is less than 1 in 10000.[8] Nodes
located on a rectangular grid have at most 8 neigh-
bors. Fewer neighbors means that less memory and
processor time is used to keep track of other nodes

L“random” refers to a homogeneous Poisson point process.

and that fewer nodes need to be considered when
making routing decisions.

e Simple routing. In greedy routing, a node for-
wards a message to the neighbor that is closest to
the destination. Greedy routing will deliver a mes-
sage from any source to any destination on Delaunay
graphs of any dimension.

e Short paths. For any placement of points, the
Delaunay triangulation contains a path less than
#w ~ 2.42 times the straight-line distance between
any endpoints.[11] Greedy routing generates paths
usually no more than 3 times the straight-line dis-
tance when nodes are placed randomly in a square[3],
and always less than V2 times the straight-line dis-
tance for Delaunay triangulations with nodes placed

on a rectangular grid.

e Redundancy. There exist multiple disjoint paths
between all pairs of nodes.

Figure 1: Delaunay triangulation (Delauny graph in 2
dimensions).

However, existing distributed algorithms for the Delau-
nay triangulation require some form of mutual exclusion,
such as locks, to maintain a global property, such as “the
unlocked portion of the graph is a triangulation”.[14, 4]
Since maintaining a global property in an unreliable en-
vironment is difficult (if not impossible) and recovering
a lost lock is complex, most researchers have given up
on using the Delaunay triangulations for position-based
routing.

Without the Delaunay triangulation, research has been
done on using topologies other than the Delaunay trian-
gulation and routing strategies other than greedy routing.
These approaches often cannot guarantee that messages
will be delivered, or resort to flooding messages, which is
inefficient.[13, 7]

Currently, the only position-based routing approach
that advertises to guarantee delivery without flood-
ing messages is planar-subgraph recovery.[2, 10] Planar-
subgraph recovery normally routes a message using
greedy routing on the communication graph. The com-
munication graph contains an edge between two nodes if
the two nodes can directly communicate with each other.
If greedy routing fails, that is, if a message is at a node
which cannot directly communicate with a node that is
closer to the destination, then the message enters the re-
covery phase.

In the recovery phase, messages are only forwarded over
edges in a planar subgraph of the communication graph.
This planar subgraph is usually a subset of the Gabriel
graph[2, 10] or of the Delaunay triangulation[6, 12]. (The
planar subgraph is able to be calculated without calculat-
ing the complete Gabriel graph or the complete Delaunay
triangulation by using an assumption about the proper-
ties of the communication graph; this assumption is dis-
cussed below.) Routing on the planar subgraph is done
using the “right-hand rule”: the message traces counter-
clockwise around a face until it reaches a node that is
closer than the one where the message entered the recov-
ery phase. At that point, the message leaves the recovery
phase and returns to greedy routing on the communica-
tion graph.

Planar-subgraph recovery has four problems:

1. Inability to find a path where one exists. The
techniques used to create the planar subgraphs as-
sume that there exists a communication range r such
that all nodes closer than r units apart are connected
in the communication graph and all nodes farther
than r units apart are not connected. In the real
world, interference, cancellations, or obstructions can
cause reception distances to vary. When these occur,
the techniques can create a subgraph that is either
disconnected or not planar, and prevent a path from
being found.[9]

2. Long paths. It is easy to construct cases where the
right-hand rule causes messages to circle the long
way around a face — even traveling the entire cir-
cumference of the graph — before reaching their
destinations.[13]

3. Long time to detect unreachable nodes. To
detect an unreachable node, the message must com-
pletely circle a face. If the unreachable node is out-

side the graph, the message must completely traverse
the circumference of the graph before determining
that the destination is unreachable.

4. The planar routing techniques do not work
in higher dimensions. The right-hand rule does
not work in three dimensions or higher, where there
is no equivalent to the counter-clockwise of two-
dimensional graphs.

In this paper, I present a new algorithm for computing
the Delaunay graph in any number of dimensions. (The
Delaunay triangulation is the Delaunay graph in two di-
mensions.) This new algorithm does not use locks and
does not maintain a global property and, therefore, does
not have the problems of existing distributed Delaunay
algorithms.

I also prove that the algorithm is self-stabilizing, that
is, from any initial state, the algorithm will always reach
the Delaunay graph. This means that the algorithm can
recover from any transient error that throws the algo-
rithm into an unexpected state. It also means that the
algorithm will be able to handle the changing conditions
caused by moving nodes.

Following those proofs, I describe the current state
of an ad-hoc routing protocol that implements the al-
gorithm. The completed protocol should solve the four
listed problems of the current state-of-the-art solution,
planar subgraph recovery. Preliminary results for the pro-
tocol are presented.

The layout of the paper is as follows. The next section
describes some basic terms and notations. Section 3 de-
fines the Voronoi diagram and Delaunay graph and lists
some of their properties that are used in this paper’s
proofs. Section 4 contains a theorem that is used to prove
the algorithm correct. Section 5 presents the algorithm, a
proof of its correctness, and a proof that the algorithm is
self-stabilizing. Section 6 describes the current state of an
mobile ad-hoc routing protocol based on the algorithm.
Section 7 covers preliminary results from simulations of
the protocol. Finally, Section 8 summarizes the results.

2 Definitions

A point p is a ordered D-tuple of reals (2, Yp, Zp, .. .). A
total ordering of points is achieved using lexigraphical or-
dering, such that the x-coordinate is the most significant
coordinate. That is, for two points p and ¢, p > ¢ is true
if:

o 1, >,
e or T, =z, and y, > y,
e or x, = x4 and y, = y, and z, > z,

For a set of points V', max(V') is the point in the set
with the greatest coordinates. Distance between points is
calculated using the Euclidean distance metric. Formally,
d(p,q) = \/(xp —2g)* + (Yp —Yg)? + (2p — 2g)* + -

A graph G = (V, E), consists of a set of points, V, called
vertices, and a set of directed edges, £. An edge is an
ordered pair of vertices. An edge from vertex v to vertex
w is denoted by vw. If edges exist in both directions
between v and w, Tw is used to denote both edges.

The term neighborhood refers to the vertices directly
reachable from a vertex. Formally, the neighborhood of
v is {w|vw € E}. Note that only outbound edges con-
tribute to the neighborhood. A vertex in the neighbor-
hood of v is said to be a neighbor of v.

An edge occupies the points on the line segment con-
necting its endpoints. Formally, vw occupies (z, + 7 -
(Tw —), Yo + 7 Y — Yv), 20 + 7 (2w — 2v), - . .), Where
0.0 < r < 1.0. A region of a space is convex if, for
any two points in the region, an edge between the points
would only occupy points inside the region.

3 Delaunay Graphs

In this section, I define the Voronoi Region, the Voronoi
Diagram, and the Delaunay Graph, and describe their re-
lationship to each other. I also state some of their prop-
erties that will be used as part of the proofs in this paper.

The Voronoi region of a vertex v in a set V is the
set of all points in the space that are at least as close to
v as any other point in V. Formally, VR(v,V) = {p €
RP|Vw € V,d(v,p) < d(w,p)}. Figures 2 and 3 show a
set of points in two dimensions and the Voronoi regions
of two of the points.

Voronoi regions are convex polyhedrons (in two di-
mensions, convex polygons). For any region VR(v,V),
the surfaces making up the boundary of the region are
equidistant from v and another vertex in V. When a
surface is equidistant from v and a vertex w, I will say
that the surface is caused by the vertex w. I define the
rightward projection of a point p onto VR(v, V') to be
the point in VR(v, V') that has the same coordinates as p
except that the x-coordinate is maximized.

If the surfaces of all the Voronoi regions of a set are
unioned, the result is a graph that forms an optimal
polygonal partition of the plane. This graph is called the
Voronoi diagram. Figure 4 shows the Voronoi diagram
for the points set from Figure 2. The partition is optimal
in the sense that, for any vertex v, all points where v is
the closest vertex are members of VR(v, V).

The Delaunay graph is the dual of the Voronoi Di-
agram. Thus, two vertices v and w are connected by
an edge in the Delaunay graph if and only if VR(v, V)
and VR(w, V') share a D — 1 dimensional surface. In two

® ® \@

@ ©) \/\(i) _
@ L@

© ©) © Vv O

Figure 2: Point set, V.

Figure 3: Voronoi re-
gions for d and f.

\

N © /k 0
A ®

@ >\ ~ /\\

/ O/

S ov o

|

/
Figure 4: Voronoi dia- Figure 5: Delaunay
gramnl. graph.

dimensions, these D — 1 dimensional surfaces are line seg-
ments. (See Figure 5 for an example of the Delaunay
graph.) The function DG(V') denotes the edges in the
Delaunay graph of a set of vertices V.

All the proofs in this paper assume that the vertices in
V' are in general position. In general position:

e No two vertices have the same coordinates.

No three vertices lie on the same line.

e If D > 2, no four vertices lie on the same circle.
e If D > 3, no five vertices lie on the same sphere.
e If D > 4, no six vertices lie on the same hypersphere.

The assumption of general position simplifies the logic
in this paper. With the assumption, if the Voronoi re-
gions of two vertices contain the same point, then the
vertices are connected by an edge in the Delaunay graph.
(It is easier to show that two regions share a point than
to show that they share a D — 1 dimensional surface.)
A family of techniques known as “Simulation of Simplic-
ity” or “Symbolic Perturbation” can be used to logically
transform sets of vertices that are not in general position
into general position.?[5]

The proofs in this paper use the following properties of
the Delaunay graph:

2Most papers on simulation of simplicity assume that the set of
points is fixed. The author has written libraries in Java that work
for a dynamic set of points. The code is available by emailing the
author.

e Subset property: For aset W C V ifv,w e W
and 7w ¢ DG(W) then 7w ¢ DG(V).

Proof: Adding more vertices to a vertex set can
only decrease the size of the Voronoi region of each
of the original vertices. Thus, VR(v, V) C VR(v, W)
and VR(w, V) C VR(w, W). If no surface is shared
by VR (v, W) and VR(v, W), then no surface can be
shared by subsets of them. O

e Equidistant property: The edge 7w € DG(V) if
and only if there exists a point p, equidistant from v
and w such that p € VR(v, V).

Proof: If p is in VR(v, V), the closest vertices to
p must be distance d(p,v) away. Since d(p,v) =
d(p,w), w must also be one of the closest vertices
to p and, thus, p € VR(w, V). Since p is in both
VR(v,V) and VR(w, V), vw € DG(V). The “only
if” portion is obvious from the definition of DG() and
VR(). O

e Neighbor-is-closer property?>: For a vertex v and
a point p, if p ¢ VR(v, V), then there exists a vertex
w such that vw € DG(V) and w is closer to p than
.

Proof: Proof by contradiction. Let W = {u|vu €
DG(V)} and assume there does not exist a vertex w
in W such that w is closer to p than v. Restated,
p € VR(v,{v} UW). Let U =V \ ({v} UW). Since
U does not contain a vertex that has an edge to v in
DG(V), none of the vertices in U cause a surface in
the boundary of VR(v, V), so removing them from
the set will not change the boundary of v’s Voronoi
region. Thus, VR(v,V) = VR(v,V \ U). By the
definition of U, V\U = {v}UW. Since p ¢ VR(v, V),
p ¢ VR(v,{v} UW). This contradicts our earlier
proof that p € VR(v, {v} UW). O

e Right-linked property: For a vertex v, if there
exists a vertex in V with an z-coordinate greater
than z,, then there exists an edge 7w € DG(V') such
that x,, > x,.

Proof: Let the point p have the same coordinates
as v except that z, is arbitrarily large. As x, goes
to infinity, v cannot be the closest vertex in V to p,
because there exist vertices in V' with z-coordinates
greater than xz,. Thus, p ¢ VR(v,V). By the
neighbor-is-closer property, we know that there ex-
ists a vertex w such that 7w € DG(V') and w is closer
to p than v. Since only vertices with z-coordinates
greater than x, can be closer to p, x,, > x,. O

3The neighbor-is-closer property can be used to show that greedy
routing always succeeds on a Delaunay graph.

4 A Theorem

Before presenting my algorithm for computing the De-
launay graph, I will first present a proof that if a graph
has four specific properties then the graph is a Delaunay
graph. In Section 5, this theorem is used to prove the
algorithm correct.

The four properties for the graph (V, E) are listed be-
low. In them, and in the rest of this section, the notation
N, represents the neighborhood of a vertex v in the graph
(V,E). Thus, N, = {w|vw € E}.

e Bidirectional: If v € E then wv € E

e Greater-linked*: For all vertices v € V such that
v # max(V), there exists an edge vw € E such that
w > .

e Delaunay-triangle-closed: For all vw,wu € E, if
70 € DG({v} U N, U {u}), then 77 € E.

e Locally-Delaunay: For all v, for all w € N,, 7w €
DG({v} UN,).

Theorem 1. If a graph (V, E) is bidirectional, greater-
linked, Delaunay-triangle-closed, and locally-Delaunay,
then the graph is a Delaunay graph.

4.1 Outline

To prove that E = DG(V), the proof first shows that
every edge in DG(V) is in E and then shows that every
edge that is not in DG(V) is not in E.

That every edge in DG(V) is in E is shown by contra-
diction. We assume that there exists at least one edge in
DG(V) that is missing from E. Since, by its definition,
DG(V) contains only bidirectional edges and, by the bidi-
rectional property, E contains only bidirectional edges,
we can assume all missing edges are bidirectional. Of all
missing edges, select an edge ab such that a < b and a
is maximized. That is, that a is the greatest vertex such
that an edge to a greater vertex is missing. Lemma 1
shows that E must contain at least one edge that is in
DG(V') and connects a to a vertex greater than a. Then,
Lemma 2 shows that if £ has one such edge, it must have
all edges in DG(V') that connect a to vertices greater than
a. Since all edges in F are bidirectional, all edges going
to or from a to vertices greater than a must be present in
FE. This conclusion contradicts the assumption on a and
proves that all edges in DG(V) are in E.

Lemma 3 shows that if all edges of DG(V) are in E,
then all edges not in DG(V') are not in E.

4The greater-linked property is different from the right-linked
property. The greater-linked property can be satisfied by an edge
between two vertices with the same z-coordinate. The right-linked
property cannot.

4.2 Lemmas

In the three lemmas, let W be all vertices in V' that are
greater than a. (Thus, b € W.) Because of the way a is
selected, if there exist v, w € W such that vw € DG(V),
then vw € E.

Lemma 1. There exists a vertex ¢ such that ¢ > a, a¢ €

DG(V) and a¢ € E.
Proof: This proof is broken down into three cases:
1. The dimension D = 1.

2. The dimension D > 2 and the x-coordinates of all
vertices in W are the same as that of a.

3. The dimension D > 2 and there exists at least one
vertex in W that has a greater z-coordinate than
that of a.

Case 1: The dimension D = 1.

Since the dimension is one, all the vertices in V' must
lie on a line. General position states that no more than
two points can be on a line. Thus, V' = {a,b} with b > a.
By the greater-linked property, E contains an edge from a
to a vertex greater than a. The only vertex that matches
that description is b. Thus, ab € E. The Delaunay graph
of two vertices is a bidirectional edge between the two
vertices. Thus, abe DG(V). Thus, E contains an edge
from a to a vertex greater than a and that edge is also in
DG(V).

Case 2: The dimension D > 2 and the z-coordinates of
all vertices in W are the same as that of a.

This case can be reduced to a case with a smaller
dimension. This reduction is done by ignoring the x-
dimension for all points concerned. Thus, if D = 4 and
all z-coordinates are identical, the case can be treated as
a D = 3 case by ignoring the z-coordinates and treating
the y-coordinates as the most-significant coordinates.

Case 3: The dimension D > 2 and there exists at least
one vertex in W that has a greater z-coordinate than that
of a.

To begin, the vertex a must have a neighbor in E with
an x-coordinate greater than x,. This is shown by contra-
diction. By the greater-linked property, £ must contain
an edge from a to a vertex greater than a. Let v be such
a vertex. Since we have assumed that a has no neigh-
bors with a greater xz-coordinate, v must have the same
z-coordinate as a. By the case assumption, there exist
vertices in W, and therefore in V', that have z-coordinates
that are greater than that of @ and v. By the right-linked
property, DG(V) must contain an edge from v to some
vertex w such that z,, > z,. Since w is greater than v

and v is greater than a, both v and w are elements of
W. Since both endpoints of v are in W and the edge is
present in DG(V), vw € E. So, in E, a has an edge to v
and v has an edge to w and w has a greater x-coordinate
than a. From the right-linked property, we know that
aw € DG({a} U N, U {w}), and, using the Delaunay
triangles-closed property, conclude that w € N,. How-
ever, this contradicts our assumption that a has no neigh-
bor in F with an z-coordinate greater than z,. Thus, a
must have a neighbor in F with an z-coordinate greater
than z,.

Let p be the rightward projection of a onto VR(a, {a}U
N,), that is, the point in VR(a,{a} U N,) that has the
same coordinates as a except that the x-coordinate is
maximized. The value x, could only be infinite if and
only if a has no a neighbor with an z-coordinate greater
than a’s. Since we have proven that a has a neighbor with
greater coordinates, p must have finite coordinates.

Since p has finite coordinates and is on the border of
VR(a,{a} U N,), there must exist a vertex c that is the
same distance from p as a is and that ¢ € N,. Restated,
the vertex ¢ causes the surface in VR(a,{a} U N,) that
contains p.

A proof by contradiction shows that the edge a¢ €
DG(V). If a¢ ¢ DG(V), then p ¢ VR(c,V). By the
neighbor-is-closer property we know that if p ¢ VR(c, V)
then there exists a vertex in {w|cw € DG(V)} that is
closer to p. Let d be such a vertex. From the way we
selected p, only vertices greater than a can be closer to p.
We have already assumed that the neighborhood of ¢ in
contains all vertices in {w|cw € DG(V)} that are greater
than a. Thus, if a¢ ¢ DG(V), ¢ must have a neighbor d
in F that is closer to p than c. Since E contains both a¢
and c—c)l, if it can be shown that ad € DG({a}UN,U{d})
then the Delaunay-triangle-closed property can be used
to prove that d is a member of N,.

Since d is closer than a to p, we can select a point ¢ on
the line segment from p to a that is equidistant from d and
a. Since p and a in VR(a, {a} U N,) and Voronoi regions
are convex, all points on the line segment from p to a
are inside VR(a, {a} U N,). Thus, ¢ € VR(a,{a} UN,).
Since d and a are equidistant from ¢, ¢ € VR(a,{a} U
N,U{d}). By the equidistant property, we can state that
ad € DG({a} U N, U{d}) and, then, by the Delaunay-
triangle-closed property state that d € N,.

However, if d € Ng, ¢ would not be the vertex in N,
closest to p. This contradicts the definition of ¢. Thus,
the edge a ¢ must be part of DG(V) and we know that E
has an edge from a to at least one vertex greater than a
such that the edge is in DG(V). O

Lemma 2. If there exists a vertex ¢ such that ¢ > a,
ac € DG(V) and a¢ € E, then for all v such that v > a
and av € DG(V), then av € E.

Note: The proof of this lemma is broken into two parts.
To understand the purpose of the parts, the best analogy
is that of infection. To show that a population is infected,
we can show that the infection passes between adjacent
people and that there exists a sequence of adjacent people
from an infected person to every person in the population.
In the analogy, the “population” is the set of a’s neighbors
in the Delaunay graph that are greater than a, a vertex is
“infected” if is has an edge from a in E, and two vertices
are “adjacent” when the surfaces they cause on VR(a, V)
share a point.

Note that it is possible, although complicated, to trans-
form this proof into a proof by induction on the length of
the sequence of adjacent people.

Proof: For the case where D = 1, Lemma 1’s Case 1
is sufficient to show that all edges in DG(V) are present
in E. The proof for cases where the dimension D > 2 is
broken into two parts:

1. If there exists a vertex v such that v > a, v causes a
surface on VR(a, V), and av € E and there exists a
vertex w such that w > a and w causes a surface on
VR(a, V) that shares a point with the surface caused
by v, then aw € E.

2. For any vertices v and w such that both are greater
than a and both cause a surface on VR(a, V), then
there exists a sequence of surfaces on VR(a,V)
caused only by vertices greater than a such that the
first is caused by v, the last is caused by w, and each
consecutive pair shares a point.

Part 1:

If there exists a vertices v and w such that they both
cause a surface on VR(a,V) and those surfaces share a
point p, then a, v and w are the closest points in V' to that
point p and, as a result, v and w must be connected by
an edge in DG(V'). We know that if an edge is in DG(V)
and both endpoints are greater than a, then the edge is
in E. Thus, vw € E.

The Delaunay-triangles-closed property states that if
av € E,vw € E and aw € DG({a} UN, U {w}), then
aw € E. We have assumed av € E and shown vw €
E. Since w causes a surface in VR(a, V'), there must
exists points, like p, such that no vertex in V is closer
than a and w. Since {a} U N, U {w} is a subset of V,
{a} U N, U{w} cannot contain a vertex closer to p, and,
thus, aw € DG({a}UN,U{w}). As a result, we conclude
that aw € E.

Part 2:
Now, we consider two vertices v and w such that v and
w are both greater than a and both cause a surface in

VR(a,V). T need to show that there exists a sequence
of surfaces on VR(a, V') caused only by vertices greater
than a such that the first is the one caused by v, the last
is caused by w, and each consecutive pair shares a point.

Assume that there exists a vertex in W with an z-
coordinates greater than the x,. If this is not the case,
the problem can be treated as one of smaller dimension,
as done in Lemma 1’s Case 2. Let p be the rightward
projection of a onto VR(a,V’). The value z, could only
be infinite if and only if V' contains no vertex with an x-
coordinate greater than a’s. Since there exists a vertex in
W and, therefore, in V' with an xz-coordinate larger than
ZTq, p must have finite coordinates.

Let ¢ and r be any two points that lie on the surface of
VR(a, V) that are caused by v and w, respectively. The
line segments gp and pr must occupy points only inside
VR(a, V), because all three points lie inside VR(a, V') and
Voronoi regions are convex.

Consider the rightward projection of the points occu-
pied by the line segments gp and p7 onto VR(a, V). This
projection lies across the surfaces caused by vertices that
have edges to a in DG(V'). As the projection crosses be-
tween surfaces, the surfaces share a point. What remains
to be proven is that the rightward projections of p and ¢
are in the surfaces caused by v and w, respectively, and
that every point of the projection lies in a surface caused
by a vertex greater than a.

Since v is greater than a, x, is either greater than or the
same as x,. If x, > x4, then ¢ is equal to the rightward
projection of ¢ onto VR(a, V). If the rightward projection
had a higher z-coordinate than ¢, it would be closer to v
than to a and, therefore, outside of VR(a, V'), contradict-
ing the definition of an rightward projection. For the case
where x,, = z,, any change in an z-coordinate does not
change which of a or v is closer. Since ¢ and the rightward
projection of ¢ only differ in the xz-coordinate, the right-
ward projection of ¢ onto VR(a,V) is still equidistant
from a and v and, therefore, on the surface of VR(a,V)
caused by v. The proof that rightward projection of r is
in the surface of VR(a, V) caused by w is similar.

Now, I must show that each point of the rightward pro-
jection of the points in the line segments gp and p7 onto
VR(a,V) is contained in a surfaces caused by a vertex
greater than a. Let s be any point on the rightward pro-
jection. Since s has the maximum x-coordinate that is
still in VR(a, V'), there must exist a vertex d which, if
s had any higher z-coordinate, it would lie closer to d
than a and, therefore, be outside of VR(a, V). Since s
is equidistant from a and d, d must cause the surface on
VR(a, V) that contains d. Because a point with s’s coor-
dinates except a higher x-coordinate would be closer to
d than a, d must have a higher z-coordinate than z,. If
Tq > Ta, then d > a. So, all points of the projection lie
in surfaces caused by vertices greater than a.

Thus, there exists a sequence of surfaces that contain
points of the rightward projections of the points occupied
by line segments gp and p7 onto VR(a, V') that constitute
a sequence of surfaces on VR(a, V') such that the first sur-
face is caused by v, the last surface is caused by w, all are
caused by vertices greater than a, and each consecutive
pair in the sequence share a point. O

Lemma 3. If E O DG(V) then E = DG(V).

Proof: Assume there exists an edge v that is in E, but
not in DG(V).

By its definition, the Delaunay graph contains an edge
between two vertices only if the Voronoi regions of the two
vertices share a border. Since F D DG(V), VR(v,{v} U
N,) = VR(v, V) because N, contains all the points that
cause the border of the Voronoi region of v in V.

Because Delaunay graphs have the equidistant prop-
erty and vw ¢ DG(V), we know that the set of points
equidistant from v and w does not intersect VR (v, V).
Since VR(v,{v} U N,) = VR(v,V), we know that the
set of points equidistant from v and w does not inter-
sect VR(v,{v} U N,). From this, using the equidistant
property, we can conclude that vw ¢ DG({v} U N,).

By Property 4, we know that if vw ¢ DG({v} U N,)
then w ¢ N,,. This contradicts our assumption that vw €
E and we can conclude that £ = DG(V). O

5 Algorithm

In this section, I present a new distributed algorithm for
computing the Delaunay graph and prove that it is both
correct and self-stabilizing. The algorithm is described as
running on a shared-memory machine, rather than a mes-
sage passing machine, in order to simplify the notations
in the proofs. The algorithm also works on a simpler
problem than ad-hoc routing. In it, nodes do not join
or leave the graph and nodes do not move. In the next
section, I will address how to make the algorithm run in
a message-passing environment where nodes join, leave,
and change location.

I begin the section by defining self stabilization. That
is followed by a description of the model of distributed
computer and the program notation. Then I present the
algorithm and prove that it is correct — that it always
halts at the Delaunay graph. The section ends with the
proof that the algorithm is self stabilizing.

5.1 Self Stabilization

A distributed system consists of a set of processors whose
local states, combined together, make the global state of
the system. A distributed algorithm coordinates changes
in the local states in order to control the global state of the

system. At any time, we can divide the set of all global
states into two classes — “safe” and “unsafe” — based on
whether or not an algorithm is fulfilling its requirements
at that time. A self-stabilizing algorithm is one where,
if the global state is ever unsafe, it is guaranteed to return
to a safe state within a finite amount of time and, once
in a safe state, remain in a safe state forever.[15]

The value in using a self-stabilizing algorithm is that
the algorithm can handle transient faults. If data gets
garbled or if a processor resets, the system may enter an
unsafe state for a period of time, but it is guaranteed to
return to a safe state and correct operation within a finite
amount of time.

For the algorithm presented here, the only safe state is
the Delaunay graph. All other states are unsafe.

5.2 Computational Model

The distributed computational model used in the presen-
tation of this algorithm and its proof of self-stabilization
is a fully-connected shared-memory computer. Each pro-
cessor has its own local memory. Processors are able to
read any other processor’s memory, but can only write to
their own memory. Section 6 will discuss how to trans-
form this shared-memory algorithm into a message-based
one.

5.3 Algorithm

I will begin by describing the local state of each proces-
sor and how the Delaunay graph is represented in the
global state. Following that, I will discuss the language
in which the algorithm is written. Lastly, I will present
the algorithm.

The algorithm’s input is a set of vertices V. For each
of the n vertices in V there is a processor. The proces-
sors are labeled Py, Ps, ..., P,. Each processor’s state is
initialized with the coordinates of one vertex. The ver-
tex associated with processor P; is denoted by P;.y. The
value of v is immutable — it does not change during the
execution of the algorithm. Section 6 will discuss the ef-
fects of letting v change, which is equivalent to letting
nodes move in an ad-hoc system.

The second piece of state that a processor stores is a
vertex P;.m that is greater than the vertex P;.7y, unless
P;.v = max(V). In the simplest case, P;.m = max(V') for
all . The value of P;.m is immutable and is initialized
before execution begins. In practice, the value for P;.m
may be calculated by another algorithm and used as an
input to this algorithm. Section 6 will describe a simple
algorithm to compute P;.m.

The third and final piece of state that each processor
stores is its vertex’s neighborhood in a local variable N,
denoted either P;.N or, if it has been shown that v = P;.7,

N,. The neighborhoods are variable and change during
the execution of the algorithm. However, the neighbor-
hoods have an invariant. The neighborhood invariant
states that if v € P;.N then P,—'yl; € DG({P,7} UP;,.N).
Neighborhoods are initialized to any set of vertices that
satisfy the neighborhood invariant (e.g., the empty set,
which always satisfies the neighborhood invariant). T will
say that a neighborhood is corrupt if it contains a point
not in V. Neighborhoods will not become corrupt during
the normal execution of the program, but may as a result
of an error.

The global state is denoted as set of edges E that is
defined in terms of the Ns. That is, vw € E if and
only if there exists a processor P; such that P,.y = v
and w € P;.N. Note, that this is the opposite of
Section 4 where the set F was given and the Ns
were derived from E’s edges.

The goal of the algorithm is to have the graph (V, E)
be a Delaunay graph.

From Section 4, we know if a graph is bidirectional,
greater-linked, Delaunay-triangle-closed, and locally-
Delaunay then it is a Delaunay graph. The algorithm
is based on this theorem. The neighborhood invariant
ensures that (V,E) is always locally-Delaunay. The other
three properties are enforced by the operations of the al-
gorithm. A high-level view of the algorithm would be:

If graph is not bidirectional,

then add edges to make the graph bidirectional.
If the graph is not greater-linked,

then add edges to make the graph greater-linked.
If the graph has two sides of a Delaunay-triangle,

then add the edge to make the Delaunay-triangle.

This view is somewhat inaccurate. If the algorithm
only added edges to a graph, it would likely result in a
superset of the Delaunay graph, not the Delaunay graph.
Also, after a new edge is added, the neighborhood invari-
ant may not hold. Thus, after any edge is added to the
graph, the algorithm has to remove edges that are not
in DG(V') and make sure the neighborhood invariant still
holds.

The algorithm removes edges not in DG(V) by using
the subset property of Delaunay graphs. This property
states that if an edge is not present in the Delaunay graph
of a subset of vertices, then the edge is not present in
the Delaunay graph of the set. Consider the case of the
algorithm attempting to add the edge v to the graph,
which means that a processor P; where P;.y = v is adding
w to its neighborhood. The algorithm removes all edges
not in the Delaunay graph of V' by removing from the
neighborhood all vertices u such that vu ¢ DG({v} U
P;.NU{w}). From the subset property, we know that the
edges not in the Delaunay graph of {v} U P;.N U {w} are
not in DG(V). In addition to removing edges not in the

Delaunay graph of V, this computaion always generates
a neighborhood that obeys the neighborhood invariant.

Before presenting a formal version of the algorithm, I
introduce the syntax and semantics used in presentation
of the formal version. The notation uses a guarded loop
written in this fashion:

do { forever }

G1—>A1
|] Gy — A

|] Gz — A3
od

The term Gj; is a boolean function called a guard. The
corresponding A; is an operation, called an action. An
action will only executed if its corresponding guard eval-
uates to true. (This is similar to if ... then ... semantics
in most languages.) The do ... od structure loops for-
ever and, for every iteration, may execute an action if its
guard evaluates to true. The do ... od structure will al-
ways execute an action if one or more guards evaluate to
true. However, if multiple guards evaluate to true, the se-
mantics does not specify which of the actions is executed.

Table 1 contains the code for the algorithm. In the
code, the following short hand is used:

e a=3Jv e P,.N such that v ¢ V
RS
e $=3Jv e P,.N such that P,.yv ¢ DG({P,.y}UP;.N)

The term « is true when the neighborhood has been
corrupted to contain a point not in V. The term f is true
when the neighborhood invariant does not hold.

For the proofs that the algorithm halts and is correct, I
will assume that the neighborhood invariant always holds
and that the state is not corrupt. Thus, both a and
will be false.

5.4 Algorithm Halts

This section begins with the definition of a state tran-
sition. This is followed by an outline of the proof that
the algorithm, starting at a non-corrupt state where the
neighbor invariant holds, will always halt. Following the
outline are the lemmas comprising the proof.

A state transition occurs whenever any processor or
any set of processors synchronously execute an action.
I will use E° to denote the initial state of the system
and E’ to denote the global state of the system after j
state transitions. Similarly, I will use P;.N? to denote the
initial neighborhood at processor P; and P;.N7 to denote
it after j state transitions. Thus, P;.N7 = {1}|,PZ—’W)) €
E7}.

The proof that the algorithm halts is broken down into
the following lemmas:

do { forever at P; }

{ Gy — Ay: make edges bidirectional }

-« and —f

and 3j such that P;.y € P;.N

and Pj.y ¢ P,.N

-
and P~y P]’Y S DG({Pl’y} UP.NU {Pj’y})
— P;.N = {w|P,.yw € DG(W)
where W = {P, v} U P,.N U{P;.v})}

{ Go — As: make the graph greater-linked }
[—oand —f
and Av € P;.N such that v > P;.y
and P;.m > Py
—_
— P;.N = {w|P,.yw € DG(W)
where W = {P,.y} U PN U{P;.m})}

{ G3 — As: make Delaunay triangles }
[—«aand -f
and Jj, k£ such that P;.y € P,.N
and P,.y ¢ P;.N
_
and P,.y P,y € DG({P;.7} U P,.NU{Py.v})
—_—
— P;.N = {w|P,.yw € DG(W)
where W = {P;.v} U P,.N U {Py.v})}

{ G4 — Ay remove corruption, restore invariant}
[aorp
od

Table 1: The algorithm. See Section 5.3 for definitions of
a and f.

4. If guard Gy is true at processor P; in state E7, then

5. If action Ay, A; or Az is executed at processor P;
in state E7, then there exists a vertex w € P;. NiT1
such that w ¢ P;.N7.

6. At any processor P;, for all vertices w and all states
EJ ifw € P,.N7 and w ¢ P;.N7T! then, for all states
k where k > j, w ¢ P;.N*.

The first lemma, Lemma 4, is used in the proof of the
last two lemmas. Lemma 5 is used to show that, ev-
ery time an action is executed, a vertex is added to a
neighborhood. In Lemma 6, we see that once a vertex
is removed from a neighborhood, it can never be added
again. This means that each processor can only execute
n actions. Since each of the n processors can only exe-
cute n actions, the algorithm must halt within n? state

transitions. Note that the proof of n actions holds for any
processor where the neighborhood invariants hold and no
state is corrupt.

Lemma 4. If guard Gy is true at processor P; in state
E7, then P,y P,m € DG({P;.v} U P,.N7 U {P,.m}).

Proof: Let the point p be (rP,rP~1 +P=2) where r
is arbitrarily large. From an expansion of the distance
frunction d() it is easy to see for two vertices a and b that
if a < b then d(a,p) < d(b,p) as r goes to infinity.

If guard G4 is true, P;.y is greater than every vertex
in P;.NJ. Thus, we know that P,;.y closest to p and that
p € VR(P,.y,{P;.y} U P;.N7). Since P;.m > Pi.7y, we
know that p is closer to P;.m than P;.~y. Since p is closer
to P;.m, we can select a point ¢ on the line segment from
p to P;.y that is equidistant from P;.m and P;.y. Be-
cause Voronoi regions are convex, all points on the line
segment from p to v are inside VR(P;.v, {P;.y} U P;.N7).
Since ¢ is on the line segment, we know that ¢ is in-
side VR(P;.7y, {P;.y} U P;.N7) and that P;.y is at least
as close to ¢ as any vertex in P;.N7. Since Py.m is
the same distance as P;.y from ¢, we know that ¢ is in
VR(P;.7y, {P;.y}UP.N7U{P;.m}). Since q is equidistant
from P;.m and P;.y, we can use the equidistant prop-
erty to conclude that P;.y P;.m € DG({P;.y} U P,.N7 U
{P;.m}). O

Lemma 5. If action Ay, Ay or As is executed at proces-
sor P; in state E7, then there exists a vertex w € P;. NI+1
such that w ¢ P;.N7.

Proof: In order for action A; to be executed at processor
P;, guard G; must be true at that processor. From the
statement of guard, it is obvious that the vertex which is
described in the guard as “P;.y” is not in P;.N7 and will
be included in P;.N7+1,

In order for action As to be executed at processor P;,
guard G2 must be true at that processor. From the guard,
we can conclude that P;.m ¢ P;.N J because P;.N7 con-
tains no vertices greater than P;.y. From Lemma 4 we
can conclude that if action As is executed, then P;.m will
be included in P;.NI+1,

In order for action As to be executed at processor P;,
guard G3 must be true at that processor. From the state-
ment of guard, it is obvious that the vertex described in
the guard as “Pj,.y” is not in P;.N7 and will be included
in PN/, O

Lemma 6. At any processor P;, for all vertices w and
all states E7, if w € P;.N7 and w ¢ P;.N7*! then, for all
states k where k > j, w ¢ P;.N*.

Proof: For this proof, let v = P;.y.
We begin by proving that if w € P;.N* where k > j,
then there must exist a point that is equidistant from

P,y and w that is inside VR(P;.vy,{P;.y} U P,.N¥~1 U
{w}). Assume that w is added to P;.N in state E* where
k > j. This could only happen if an action executed
that added w to P;.N. For the action to execute, the
guard must have been true. For the guard to be true,
P;.yw must be an element of DG({P;.y}UP;. N¥~tu{w}).
(This is obvious for guards G; and G3 and was shown
in Lemma 4 to be a consequence of guard G3.) By the
equidistant property, we know that for P;.yw to be an
element of DG({P;.v} U P;.N*~1U{w}), there must exist
a point that is equidistant from P;.y and w and is inside

Since w is only added if there exists a point
that is equidistant from P,y and w that is inside
VR(P;.7, {P; 7} UP,.N*~tu{w}), I can prove the lemma
by showing that VR(P;.v, { P;.y} U P;.N*) (which is a su-
perset of VR(P;.v, {P;.y} U P,.N* U {w})) does not con-
tain any point equidistant from P;.y and w for k > j.
This is proved by induction. The base case is that
VR(P;.7y,{P;v} U P;.N7*1) does not contain any points
equidistant from P;.y and w. The inductive case is
that any point not in VR(P;.y, {P;.y} U P;.N') is not in
VR/(P;.7y, {P;.y}UP;.N"*1) for any [. (The inductive case
is more general than is necessary, but is included because
it provides an intuitive understanding of why the algo-
rithm halts.)

Base case: There does not exist a point p such that
d(P;y,p) = d(w,p) and p € VR(P;.y, {Pi.y} U P.NTH).

Since P.yw € E7, we know that w € P;.N7 and, since
Ee— . .
Pyw ¢ E'*! we know that w ¢ P;.N7*t!. Every ac-
tion contains the same operation to generate P;.NJ*!,
so we know that P;.N'*! = DG({P,.v} U P,.N’ U {a}),
where R—*y()z is the edge added by the action. Since
w ¢ P;.NI*L we know that P;.yw ¢ DG({P;.y}UP;.N7U
{a}), and can conclude that there do not exist any points
equidistant from P;.y and w in V R(P;.7y, { P;.y} UP;.N7 U
{a}). |

I will now show that VR(P;.y,{P;.y}UP;.N? U{a}) =
VR(P;.7y,{P;.v} U P;.N7t1). Let B be the set of all ver-
tices in P;.N7, that are not in P;.N7*1. (Note that B con-
tains w.) By the definition of N7T1 there is no edge from
P,y to any vertex in B in DG({P;.y}UP;.N7U{a}). Since
there is no edge from P;.y to any vertex in B, the bound-
ary of VR(P;.y, {P;.v} U P;.N7 U{a}) is made of surfaces
caused by vertices not in B. As a result, if all the vertices
in B are removed from the set, the Voronoi region will re-
main the same. Thus, VR(P;.y,{P;.v} U P;.N7 U {a}) =
V R(P;.7y,{P;.y}UP;.N7U{a}\ B), and from the definition
of B it is easy to conclude that P;.N/*! = P, N7U{a}\ B.

Since there are no points equidistant from P;.y and w
in VR(P;.y,{P;.v}UP;.NU{a}) and VR(P;.7y, { Pi.y} U
P,.NiU{a}) = VR(P;.7y,{Pi.y} UP,..N7t1) we can con-

10

clude that the base case is true.

Inductive case: For any integer I, VR(P;.y, {P;.v} U

First, if no vertex is added to P;.N in the state tran-
sition from [to ! + 1, then P,.N' = P, N'*! and the
case is true. The rest of this proof will concentrate
on the case where a vertex a is added to P;.N. Thus,

It is obvious from the definition of a Voronoi region
that adding vertices to the set can only make the Voronoi
region smaller. Thus, we know that VR(P;.v,{P;.y} U
P,.N'U {a}) € VR(P,.v,{P;.v} U P,.N'). Let B be the
set of vertices in P;.N' that are not present in P;.N +1
By the definition of N**1, there is no edge from P;.y to
any vertex in B in DG({P;.y} UP,.N'U{a}). Since there
is no edge from P;.y to any vertex in B, the boundary of
VR(P;.v, {P;. 7} UP;,.N'U{a}) is made of surfaces caused
by vertices not in B. As a result, if all the vertices in
B are removed, the Voronoi region will remain the same.
Thus, VR(P;.7y, {P;.7} U P;.N"*Y) = VR(P;.7y, {P;.7} U
P;.N'U{a}), and we can conclude that VR(P;.7, {P;.y}U
P, N'*1) is a subset of VR(P;.v, {P;.y} U P;.NY). O

5.5 Algorithm is Correct

The proof that the algorithm always halts at the Delau-
nay graph is based on Theorem 1 from Section 4. The
theorem states that if the graph is bidirectional, greater-
linked, Delaunay-triangle-closed, and locally-Delaunay,
then the graph is a Delaunay graph.

The proof that the algorithm is correct, that is, always
halts at the Delaunay graph, is broken into these lemmas:

7. If the graph (V, E7) is not bidirectional, then there
exists a processor P;, where a guard evaluates to true
in state F7.

. If the graph (V, E7) is not greater-linked, then there
exists a processor P;, where a guard evaluates to true
in state E7.

If the graph (V, E7) is not Delaunay-triangle-closed,
then there exists a processor P;, where a guard eval-
uates to true in state E7.

The neighborhood invariant ensures that the graph is
always locally-Delaunay. If, in any state, any of the other
properties does not hold, then one of the lemmas must
apply and a guard must evaluate to true at (at least) one
processor. If a guard evaluates to true, the algorithm can-
not have halted. Thus, if the graph is not the Delaunay
graph, the algorithm cannot have halted. Since we know
that the algorithm halts within n? steps, when it halts
the state must be the Delaunay graph. Note that this

proof holds for any initial state where the neighborhood
invariants hold and no state is corrupt.

Lemma 7. If the graph (V, E7) is not bidirectional, then
there exists a processor P;, where a guard evaluates to
true in state E7.

Proof: If the graph is not bidirectional, there exists two
vertices v and w such that vw € E9 and wo ¢ EV.

This proof is broken into two cases.

Case 1: vw € DG({w} U N} U {v})
In this case, guard G is true at the processor P; where
Py =w.

Case 2: 7w ¢ DG({w} U NJ, U {v})

Since by the neighborhood invariant we know that
vw € DG({v} UN/), we know from the equidistant prop-
erty that there must exist at least one point p such that
p is equidistant from v and w and inside VR(v,{v} U
NJ). However, by the case assumption, we know that
VR(w, {w}UNJ U{v}) does not contain any point that is
equidistant from v and w and, therefore, does not contain
p. Since p ¢ VR(w, {w} U Nj U {v}), by the neighbor-is-
closer property there must exist some vertex in N}, that
is closer to p than v or w. Let a be such a vertex.

Let ¢ be a point that is occupied by a line segment
from p to v such that ¢ lies equidistant from a and v.
Because Voronoi regions are convex, ¢ € VR(v, {v} UN7)
and thus v is closer to ¢ than any vertex in NJ. From
the facts that ¢ is equidistant from a and v and inside
VR(v, {v} UNJU{a}), using the equidistant property, we
can conclude that va € DG({v} U N7 U {a}).

Because, in E7, w is a neighbor of v and a is a neighbor
of w and va € DG({v} UNJ U {a}), we know that guard
(3 is true at processor P; where P;.y = v. O

Lemma 8. If the graph (V, E7) is not greater-linked, then
there exists a processor P;, where a guard evaluates to true
in state E7.

Proof: If the graph is not greater-linked, then there must
exist a vertex (not max(V')) that does not have a connec-
tion to a vertex with greater coordinates. At this vertex,
guard G2 must be true. O

Lemma 9. If the graph (V, E7) is not Delaunay-triangle-
closed, then there exists a processor P;, where a guard
evaluates to true in state F7.

Proof: Any three vertices that cause the Delaunay-
triangle-closed property not to hold, will also cause Guard
G5 to be true at one of them. O]

11

5.6 Algorithm is Self-Stabilizing

Having shown that the algorithm always halts at the De-
launay graph for any initial state that is not corrupt and
satisfies the neighborhood invariant, I will now show that
the algorithm is self stabilizing.

To prove that an algorithm is self-stabilizing, two
things must be proved: convergence and closure.[15]
Convergence is the property that, from an arbitrary
starting state, the algorithm will reach a safe state within
a finite amount of time. Closure is the property that
once the algorithm enters a safe state, it will not enter an
unsafe state.

The algorithm converges. It should be obvious from the
construction of the algorithm that if a processor’s state is
ever corrupted or if the invariant no longer holds at a pro-
cessor, then the processor’s neighborhood is reset to the
empty set. Until the neighborhood is reset to the empty
set, the processor will perform no other actions. From the
proof of Section 5.4, we know that a processor which has
a neighborhood that is not corrupt and obeys the neigh-
borhood invariant will execute at most n actions. We
can now state that any processor with a neighborhood
that is corrupt or does not obey the invariant executes at
most n + 1 actions: one to reset the neighborhood to the
empty set and n “normal” transitions. Since the algo-
rithm cannot halt with a corrupt state or a neighborhood
that violates the invariant, we conclude that the algo-
rithm will always return to the Delaunay graph within
n(n + 1) state transitions. Thus, the full algorithm does
show convergence.

The algorithm also shows closure. Once the graph is in
a safe state — the Delaunay graph — the algorithm does
not change state. We know this because we have seen
that the algorithm must halt and, in every state that is
not the Delaunay graph, the algorithm has not halted.
Thus, once the state has reached the Delaunay graph, it
will not make any transitions.

6 Protocol

The major contribution of this paper is the algorithm and
the proof of its correctness. I will use the rest of this paper
to describe a mobile ad-hoc routing protocol based on the
algorithm and some preliminary results for simulations of
the protocol.

I will use algorithm to refer to the shared-memory
computation presented in Section 5 and protocol to re-
fer to the message-based computation presented in this
section.

6.1 Mapping the algorithm to the proto-
col

The protocol has to handle a number of new issues, be-
cause the algorithm presented in Section 5 made a number
of assumptions that do not hold in an ad-hoc environ-
ment. First, the protocol must use message passing, not
shared memory. Second, the protocol’s nodes can send
messages directly to only a limited number of nodes, not
to all of them. Third, the protocol’s nodes are not static;
they can move, join the network, and leave the network.
Lastly, the protocol cannot assume away the problem of
calculating P;.m for each node.

It is trivial to map the shared-memory operations onto
message-passing operations. The algorithm contains read
and writes of local memory and reads of remote memory.
For reads and writes of local memory, nothing changes.
For reads of remote memory, they are replaced by a Read-
Request message and a ReadReply message. (In the pro-
tocol, the ReadReply message may be delayed to pre-
vent sending multiple copies of the same message within
a short period of time.)

In the algorithm, we assumed every node could com-
municate with (i.e., read the remote memory of) every
other node. In the ad-hoc environment, nodes cannot
send a message directly to any other node; some are out
of transmission range. The protocol solves this by using
source-routing. Each node maintains an explicit hop-by-
hop path to each of its neighbors. (These source-routed
paths are expected to only contain a few hops.)

In the algorithm, the set of nodes was static and node
positions did not change. In the ad-hoc environment,
nodes can join and leave the network, as well as move
about. This is actually not a problem, since the algorithm
is self-stabilizing. Any out-of-date information is viewed
as corrupt and will be purged by the algorithm and by
the soft-state mechanisms.

Lastly, the algorithm assumed away the problem of cal-
culating P;.m. The current incarnation of the protocol
does not calculate P;.m and, therefore, does not stabilize
to a Delaunay triangulation in some cases. In Section 6.4,
I will discuss how the protocol can be augmented to han-
dle those cases.

6.2 State

In the protocol, each node has three pieces of state.

The first piece of state is the node’s coordinates. This
is assumed to be gotten from an external source, such as
a GPS receiver.

The second piece of the state is the node’s neighbor-
hood. For each neighbor, the node stores the neighbor’s
network (MAC) address, its last known location, a source
route to the neighbor, and the time that a message was

12

last received from the neighbor. This information is soft
state and if a message has not be received from the neigh-
bor in the last Tijmeout seconds, the neighbor’s entry is
deleted.

The third and final piece of state kept is the candi-
date neighbor information. The candidate neighbor is
the neighbor’s neighbor that is closest. The node tries
to add the lone candidate neighbor to its neighborhood
every Theartbeat Seconds. (This could be done to more
nodes and more often, but limiting it to one node every
Theartbeat Seconds prevents flooding the network.) For the
candidate neighbor information, the node stores the can-
didate’s network address, its last known location, and a
source route to it.

6.3 Events

The state is changed by five types of events: a timer
expiring, a message arriving, or the node joining, moving,
or leaving.

6.3.1 Timer expires

Every Theartbeat S€conds, the protocol’s timer expires. At
that point, the node deletes stale information. That is,
the node deletes every neighbor from whom a message
hasn’t been received in Tyimeout seconds. (For the simu-
lations, Theartbear Was set to 2 seconds and Tyjmeour to 10
seconds.) Next, the node broadcasts a ReadRequest mes-
sage and sends source-routed ReadRequest messages to
any neighbors that are more than one hop away. Lastly,
the node sends a source-routed RouteRequest message to
the candidate neighbor, if there is one. After that mes-
sage is sent, the candidate neighbor information is cleared
to make way for a new candidate neighbor.

6.3.2 Message Arrives

There are two types of messages: ReadRequest and Read-
Reply. They have the same contents and are treated ex-
actly the same, except in one regard: The ReadRequest
message will, in some cases, cause a ReadReply message
to be sent; the ReadReply message will never cause a
ReadReply to be sent.

The ReadRequest and ReadReply messages contain the
sender’s coordinates, a complete copy of the sender’s
neighborhood, and a source-route from the source to the
destination. The protocol assumes that the underlying
layer is bidirectional, and that a source route from node
a to node b can be reversed to generate a source route
from b to a.

When a message is received at its destination, the re-
ceiver checks if the sender is currently a neighbor. If the
sender was a neighbor and its locations has not changed,

the receiver updates the time a message was last received
from the sender.

If the message’s sender was not a neighbor, or if the
sender was a neighbor and its location has changed, the
receiver evaluates if the sender should be a neighbor. This
is done the same as in the algorithm — the sender should
be a neighbor if the Delaunay triangulation of the loca-
tions of the sender, the receiver, and the receiver’s current
neighbors contains an edge from the sender’s location to
the receiver’s. If the sender should be a neighbor, it is
added to the neighborhood and then the neighborhood
invariant is restored, which may cause some neighbors to
be deleted.

If the sender was not added as a neighbor and the mes-
sage sent was a ReadRequest, then a ReadReply message
is sent back. If the sender was added as a neighbor, then
no ReadReply is sent back because, when the timer ex-
pires, a ReadRequest message will be sent to it. Thus, in
essence, the reply is just being delayed and merged with
the ReadRequest sent at the next timer expiration.

Lastly, for each message received, the receiver updates
the candidate neighbor information. If the sender has
a neighbor that should be a neighbor of the receiver
and currently is not, and that neighbor of the sender
is closer than the current candidate neighbor, then the
sender’s neighbor becomes the new candidate neighbor.
The source-routed path to the candidate neighbor is got-
ten by reversing the path from the sender to the receiver
and concatenating the path from the sender to its neigh-
bor.

6.3.3 Node Joins

When a node joins, it broadcasts a ReadRequest and
starts the timer. In time, it will receive messages from
the other nodes in order to initialize its neighborhood.

6.3.4 Node Moves

When a node moves, it needs to restore the neighborhood
invariant, because some nodes in the neighborhood may
now violate the neighborhood invariant. The violating
nodes are removed from the neighborhood.

6.3.5 Node Leaves

When a node leaves, it does nothing. Other nodes will
delete it from their neighborhood when the information
grows stale in T};meout Seconds.

This concludes the description of the current running ver-
sion of the protocol. I will now discuss why P;.m is not
being calculated and how the protocol can be extended
to match the algorithm.

13

6.4 Not calculating P;.m

The value of P;.m at every processor P; plays two roles in
the algorithm. One of its roles is to provide local connec-
tivity — each node can find at least one neighbor. The
other of its roles is to provide global connectivity — that
the set of nodes forms a single Delaunay triangulation
and not multiple smaller ones.

Local connectivity is provided for in the protocol by
broadcasting ReadRequest messages every Theartbeat S€C-
onds. Any pair of nodes within communication range can
hear those broadcast messages and find a neighbor.

Global connectivity is not provided for by the current
implementation of the protocol. In one sense, global con-
nectivity is impossible to guarantee. If there is a partition
of the nodes into sets A and B such that none of the nodes
in A can communicate directly with any of the nodes in B,
no protocol could form a single Delaunay triangulation.

But what about a lesser definition of global connec-
tivity? If there does not exist such a partition, can this
protocol guarantee that a single Delaunay triangulation
is computed? No. However, I believe this algorithm does
form a single triangulation where there are no obstruc-
tions or other effects that lessens the transmission radius.
Currently, the simulator does not support obstructions,
so implementing the calculation of P;.m has not become
vital to my studies.

I am considering two possible enhancements to ensure
global connectivity. The first enhancement would have
each node store a source-route to what it believes to be
the node with the greatest coordinates. Each node that
did not have a neighbor with greater coordinates would
flood through out the network a message that contained a
source-route to it. Every node would forward the source
route of the node with the greatest coordinates. If a node
did not have a neighbor with greater coordinates and re-
ceived a flooded message, it would send a ReadRequest
message to the node with the greatest coordinates.

This first enhancement would ensure global connectiv-
ity, but it does so by creating messages that use very large
source-routes. In dynamic environments, those source
routes may not be valid for very long. Additionally, a
message that must traverse many hops has a higher prob-
ability of being lost.

The second possible enhancement tries to avoid mes-
sages that use long source-routes. In this enhancement,
every node that does not have a neighbor with greater co-
ordinates floods only its location and floods it only over
the Delaunay triangulation of which it is a part. Thus, if
there are multiple Delaunay triangulations, the nodes in
each would record different nodes as being the one with
the greatest coordinates. If two nodes that can communi-
cate (i.e., are able to transmit to each other, but are not
neighbors) discover that they have different nodes as the

greatest in the DT, then they know that they are part of
two separate DTs and need to merge them.

For the merge operation, let a and b be the nodes that
can communicate but are part of separate DTs. Node
a will send a message of a new type, a MergeStepOne
message, to b. The MergeStepOne message contains a’s
coordinates. When b receives a MergeStepOne message, it
sends out a MergeStepTwo message. The MergeStepTwo
message contains a’s coordinates and a source route to
a. The MergeStepTwo message is not source routed, but
greedy routed over b’s DT. The MergeStepTwo is routed
to ¢, the node in b’s DT that is closest to a’s coordinates.
The node ¢ now sends a ReadRequest message to a and
begins the merging of the two DTs. The node ¢ must
eventually add a as a neighbor, because it is the node in
its DT that is closest to a.

This second enhancement would use shorter source-
routes than the first enhancement, because nodes a, b
and ¢ would have to be geographically close to one an-
other. It would appear to ensure global connectivity for
any set of nodes, but it does depart drastically from the
P;.m feature of the proof. Restated, it is not obvious that
this second enhancement is derivative of the proof and it
is not obvious that the resulting protocol would have the
qualities demonstrated in the proof.

7 Simulation Results

I remind the reader that the contribution of this paper
is the algorithm and its proof of correctness. The results
presented here are meant to be emblematic of the proto-
col’s operation and not the rigorous study expected of a
systems paper.

The simulator was written in Java and implements the
802.11 MAC protocol. The code is available by emailing
the author. The simulator can be run on the web at URL
commented out.

The study consisted of 10 simulations, each with 128
nodes placed randomly in a square. The size of the square
was selected so that, on average, each node could commu-
nicate with 8 other nodes. The value 8 was selected as a
small value where the physical network was connected. In
4 of the 10 simulations, there were disconnected compo-
nents. In these cases, the disconnected components were
removed — up to 3 nodes were deleted and not replaced.

The time to stabilize fell between 15 and 30 seconds.
With Theartbear S€t to 2 seconds, that means that runs sta-
bilized after between 8 and 15 timer periods. The time to
stabilize seemed to be loosely correlated with the maxi-
mum length of a source-route seen in the network.

When stable, nodes averaged 6 DT neighbors and none
had more than 10 neighbors. (No numbers were gathered
when the graph was not stable.)

14

Figure 6 shows a histogram of the number of hops in the
source routes. 74 percent of DT edges were a direct con-
nection between nodes and 95 percent of DT edges had 5
or fewer hops in their source route. The maximum length
source-route varied from run to run with the low being 11
hops, and the high being 32 hops. Most long source routes
occurred at the borders of the network, where nodes were
often in range of only one other node.

600
500
400
300
200
100

Count

| 1 \
10 15 20

Number of Hops

25

Figure 6: Histogram of hops in the source-routes.

To evaluate routes, 100 pairs of endpoints were ran-
domly selected for each of the 10 simulation. Figure 7
plots the distance between the endpoints to the distance
of the path on the DT. The length of the path on the DT
is almost linear to the distance between the endpoints.

1000
800
600
400
200

Distance on DT

200

400

Straight-line distance between endpoints

600 800 1000

Figure 7: Distance vs. Distance on DT, 1000 routes.

Figure 8 plots the distance between the endpoints
against the number of hops in the physical network. The
relationship between distance and hops is non-linear for
three reasons. The first reason is that some straight edges
must follow a circuitous source-route around holes in the
network. The second reason is that some DT edges are
short, so that a single hop might not carry a route a great
distance. The third reason is that a route could cross be-
tween the same pair of nodes multiple times.

Hops

200

Straight-line distance between endpoints

400 600 800 1000

Figure 8: Distance vs. hops, 1000 routes.

8 Conclusion

In this paper, I have presented a new distributed algo-
rithm for computing the Delaunay graph. The algorithm
is self-stabilizing and is, therefore, suited for mobile ad-
hoc applications.

I presented the design for a protocol which, with the
calculation of P;.m, should solve the four problems with
the state-of-the-art solution, planar-subgraph recovery.
First, the presented protocol is a generic routing protocol
— it will work on any connected graph; it just happens
to be efficient when nearby nodes can communicate. As
a result of this, interference, cancellations, and obstruc-
tions can lower the efficiency of the network, but not, as in
planar subgraph recovery, prevent routes that exist from
being found.

Second, nodes near “holes” in the network have a choice
of source-routes, either through their clockwise or couter-
clockwise neighbors, and selecting the lowest cost source-
route should lower the chance of messages taking the
“long way” around holes in the network. The presented
protocol will never route a message around the complete
circumference of the graph.

Third, the presented algorithm can quickly determine
if a node is not present in the graph. Once the message
has reached the node in the graph that is closest to the
(absent) destination, that node can tell that the destina-
tion does not exist or has moved. The message will never
completely circle a hole in the graph nor traverse the en-
tire circumference of the graph in order to determine that
a node is unreachable.

Lastly, the presented protocol works in three dimen-
sions. Admittedly, most of the properties listed in the in-
troduction have not been proven for the Delaunay graph
in three dimensions and it is known that, in three dimen-
sions, nodes can average O(n) neighbors.[1] Nonetheless,
this paper’s protocol, to the best of my knowledge, is the
first position-based routing protocol for three dimensions
that guarantees delivery of all messages without flooding.

15

References

[1] Franz Aurenhammer. Voronoi diagrams — a survey of a
fundamental geometric data structure. ACM Computing
Surveys, 23(3):345-405, September 1991.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless networks.
In 3rd Int. Workshop on Discrete Algorithms and methods
for mobile computing and communications (DialM °99),
1999.

Prosenjit Bose and Pat Morin. Online routing in triangu-
lations. In Proceedings of the 10th International Sympo-
stum on Algorithms and Computation (ISAAC’99), 1999.

Nikos Chrisochoides and Florian Sukup. Task parallel im-
plementation of the Bowyer-Watson algorithm. In Pro-
ceedings of the Fifth International Conference on Numer-
ical Grid Generation in Computational Fluid Dynamics
and Related Fields, 1996.

Herbert Edelsbrunner and Ernst P. Mucke. Simulation of
simplicity: A technique to cope with degenerate cases in
geometric algorithms. In Symposium on Computational
Geometry, pages 118-133, 1988.

J. Gao, L. J. Guibas, J. Hershburger, L. Zhang, and
A. Zhu. Geometric spanner for routing in mobile net-
works. In Proceedings of the 2nd ACM Symposium on
Mobile Ad Hoc Networking & Computing (MobiHoc01),
pages 45-55, 2001.

S. Giordano, I. Stojmenovic, and L. Blazevic. Position
based routing algorithms for ad hoc networks: A taxon-
omy. Ad Hoc Wireless Networking, 2003. To appear.

A. L. Hinde and R. E. Miles. Monte carlo estimates of
the distributions of the random polygons of the Voronoi
tessellation with respect to a Poisson process. Journal of
Statistical Computer Simulations, 10:205-223, 1980.

B. Karp. Challenges in geographic routing: Sparse net-
works, obstacles, and traffic provisioning. In DIMACS
Workshop on Pervasive Networking, 2001.

B. Karp and H.T. Kung. GPSR: Greedy perimeter state-
less routing for wireless networks. In MobiCom 2000,
August 2000.

J. Mark Keil and Carl A. Gutwin. The Delaunay tri-
angulation closely approximates the complete Euclidean
graph. In Workshop on Algorithms and Data Structures
1989, pages 47-56, 1989.

Xiang-Yang Li, G. Calinescu, and Peng-Jun Wan. Dis-
tributed construction of planar spanner and routing
for ad hoc networks. In Proceedings of IEEE INFO-
COM’2002, 2002.

Martin Mauve, Jorg Widmer, and Hannes Hartenstein.
A survey on position-based routing in mobile ad-hoc net-
works. In IEEE Network, November 2001.

E. Puppo, L. Davis, D. De Menthon, and Y. A. Teng.
Parallel terrain triangulation. Interational Journal of Ge-
ographical Information Systems, 8(2):105-128, 1994.

ACM Computing

2]

8l

(4]

(5]

[10]

(11]

(12]

(13]

[14]

Marco Schneider. Self-stabilization.
Surveys, 25(1):45-67, March 1993.

(15]

